Waveguide fabrication in lfithium-niobo-phosphate glasses by high repetition rate femtosecond laser: route to non-equilibrium material’s states
نویسندگان
چکیده
We study waveguide fabrication in lithium-niobo-phosphate glass, aiming at a practical method of single-stage fabrication of nonlinear integrated-optics devices. We observed chemical transformations or material redistribution during the course of high repetition rate femtosecond laser inscription. We believe that the laser-induced ultrafast heating and cooling followed by elements diffusion on a microscopic scale opens the way toward the engineering non-equilibrium sates of matter and thus can further enhance Refractive Index (RI) contrasts by virtue of changing glass composition in and around the fs tracks. © 2014 Optical Society of America OCIS codes: (130.2755) Glass waveguides; (160.2750) Glass and other amorphous materials. References and links 1. H. Misawa and S. Juodkazis, eds., 3D Laser Microfabrication. Principles and Applications (Wiley-VCH, Weinheim, 2006). 2. R. Osellame, G. Cerullo, and R. Ramponi, Femtosecond Laser Micromachining: Photonic and Microfluidic Devices in Transparent Materials, SpringerLink : Bücher (Springer Berlin Heidelberg, 2012). 3. V. Mezentsev, J. Petrovic, M. Dubov, I. Bennion, J. Dreher, H. Schmitz, and R. Grauer, “Femtosecond laser microfabrication of subwavelength structures in photonics,” Proc. SPIE 6459, 64590B (2007). 4. A. V. Turchin, M. Dubov, and J. A. R. Williams, “In situ measurement and reconstruction in three dimensions of femtosecond inscription-induced complex permittivity modification in glass,” Opt. Lett. 35, 2952–2954 (2010). 5. A. V. Turchin, M. Dubov, and J. Williams, “3D reconstruction of the complex dielectric function of glass during femtosecond laser micro-fabrication,” Optical and Quantum Electronics 42, 873–886 (2011). 6. V. Mizeikis, S. Kimura, N. V. Surovtsev, V. Jarutis, A. Saito, H. Misawa, and S. Juodkazis, “Formation of amorphous sapphire by a femtosecond laser pulse induced micro-explosion,” Applied Surface Science 255, 9745–9749 (2009). 7. L. B. Glebov, V. I. Smirnov, C. M. Stickley, and I. V. Ciapurin, “New approach to robust optics for HEL systems,” Proc. SPIE 4724, 101–109 (2002). 8. S. M. Eaton, H. Zhang, M. L. Ng, J. Li, W.-J. Chen, S. Ho, and P. R. Herman, “Transition from thermal diffusion to heat accumulation in high repetition rate femtosecond laser writing of buried optical waveguides,” Opt. Express 16, 9443–9458 (2008). 9. S. M. Eaton, M. L. Ng, J. Bonse, A. Mermillod-Blondin, H. Zhang, A. Rosenfeld, and P. R. Herman, “Low-loss waveguides fabricated in BK7 glass by high repetition rate femtosecond fiber laser,” Appl. Opt. 47, 2098–2102 (2008). 10. T. Allsop, M. Dubov, V. Mezentsev, and I. Bennion, “Inscription and characterization of waveguides written into borosilicate glass by a high-repetition-rate femtosecond laser at 800 nm,” Appl. Opt. 49, 1938–1950 (2010). 11. M. Sakakura, M. Terazima, Y. Shimotsuma, K. Miura, and K. Hirao, “Heating and rapid cooling of bulk glass after photoexcitation by a focused femtosecond laser pulse,” Opt. Express 15, 16800–16807 (2007). 12. A. Pasquarello and R. Car, “Identification of Raman defect lines as signatures of ring structures in vitreous silica,” Physical Review Letters 80, 5145–5147 (1998). 13. D. J. Little, M. Ams, P. Dekker, G. D. Marshall, and M. J. Withford, “Mechanism of femtosecond-laser induced refractive index change in phosphate glass under a low repetition-rate regime,” Journal of Applied Physics 108, 033110 (2010). 14. S. Gross, D.G. Lancaster, H. Ebendorff-Heidepriem, T.M. Monro, A. Fuerbach, and M.J. Withford, “Femtosecond laser induced structural changes in fluorozirconate glass,” Opt. Mater. Express 3, 574–583 (2013). 15. I. Sokolov, Y. Tarlakov, N. Ustinov, N. Valova, and A. Pronkin, “Influence of the nature of an alkali cation on the electrical conductivity of vitreous MePO3 (Me = Li, Na, or K),” Glass Physics and Chemistry 29, 305–309 (2003). 16. A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic Press Inc., 1994). 17. C. Ziling, L. Pokrovskii, N. Terpugov, I. Savatinova, M. Kuneva, S. Tonchev, M. N. Armenise, and V. M. N. Passaro, “Optical and structural properties of annealed PE:LiNbO3 waveguides formed with pyrophosphoric and benzoic acids,” Journal of Applied Physics 73, 3125–3132 (1993). 18. A. Fernandez, T. Fuji, A. Poppe, A. Frbach, F. Krausz, and A. Apolonski, “Chirped-pulse oscillators: a route to high-power femtosecond pulseswithout external amplification,” Opt. Lett. 29 1366–1368 (2004). 19. R. Graf, A. Fernandez, M. Dubov, H. Brueckner, B. Chichkov, and A. Apolonski, “Pearl-chain waveguides written at megahertz repetition rate,” Applied Physics B: Lasers and Optics 87, 21–27 (2007). 20. W. Yang, P. G. Kazansky, Y. Shimotsuma, M. Sakakura, K. Miura, and K. Hirao, “Ultrashort-pulse laser calligraphy,” Applied Physics Letters 93, 171109 (2008). 21. J. Goldstein, Scanning Electron Microscopy and X-Ray Microanalysis (Springer London, Limited, 2003). 22. D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez, and R. Gauvin, “CASINO v 2.42a. A fast and easy-to-use modeling tool for scanning electron microscopy and microanalysis users,” Scanning 29, 92–101 (2007). 23. T. Uchino and T. Yoko, “Structure and vibrational properties of alkali phosphate glasses from ab initio molecular orbital calculations,” Journal of Non-Crystalline Solids 263–264, 180–188 (2000). 24. E. Kartini, T. Y. S. P. Putra, I. Kuntoro, T. Sakuma, K. Basar, O. Kamishima, and J. Kawamura, “Recent studies on lithium solid electrolytes (LiI)x(LiPO3)1−x for secondary battery,” Journal of the Physical Society of Japan 79SA, 54–58 (2010). 25. J. Li, Z. Sun, X. Zhu, H. Zeng, Z. Xu, Z. Wang, J. Lin, W. Huang, R. S. Armstrong, and P. A. Lay, “Optical bistability for ZnO-Nb2O5-TeO2 glasses,” Optical Materials 25, 401–405 (2004). 26. N. K. Mohan, M. R. Reddy, C. Jayasankar, and N. Veeraiah, “Spectroscopic and dielectric studies on MnO doped PbO-Nb2O5-P2O5 glass system,” Journal of Alloys and Compounds 458, 66–76 (2008). 27. I. Mazali, L. Barbosa, and O. Alves, “Preparation and characterization of new niobophosphate glasses in the Li2O-Nb2O5-CaO-P2O5 system,” Journal of Materials Science 39, 1987–1995 (2004). 28. R. R. Rakhimov, V. J. Turney, D. E. Jones, S. N. Dobryakov, Y. A. Borisov, A. I. Prokofev, and A. I. Aleksandrov, “Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithiumniobium phosphate glasses,” The Journal of Chemical Physics 118, 6017–6021 (2003). 29. F. Cotton and G. Wilkinson, Advanced Inorganic Chemistry (Wiley, New York, 1999). 30. S. C. Abrahams and P. Marsh, “Defect structure dependence on composition in lithium niobate,” Acta Crystallographica Section B 42, 61–68 (1986).
منابع مشابه
Single-step fabrication of stressed waveguides with tubular depressed-cladding in phosphate glasses using ultrafast vortex laser beams
We report on the fabrication of the stressed optical waveguide with tubular depressedrefractive-index cladding in phosphate glasses by use of femtosecond vortex beam. Strained regions were emerged in domains surrounding the tubular track. Waveguiding occurs mainly within the tube induced by femtosecond laser.
متن کاملFemtosecond fiber laser direct writing of optical waveguide in glasses
There is a great deal of interests and efforts in the area of femtosecond (fs) laser direct writing of transparent materials, which shows promise to be a powerful and flexible technique for rapid fabrication of photonic micro-device, such as gratings, waveguides and optical amplifiers. Waveguide properties depend critically on the sample material properties and writing laser characteristics. In...
متن کاملStressed waveguides with tubular depressed-cladding inscribed in phosphate glasses by femtosecond hollow laser beams.
We report on the single-step fabrication of stressed optical waveguides with tubular depressed-refractive-index cladding in phosphate glasses by the use of focused femtosecond hollow laser beams. Tubelike low index regions appear under direct exposure due to material rarefaction following expansion. Strained compacted zones emerged in domains neighboring the tubular track of lower refractive in...
متن کاملNanoindentation studies on waveguides inscribed in chalcogenide glasses using ultrafast laser
Optical straight waveguides are inscribed in GeGaS and GeGaSSb glasses using a high repetition-rate sub-picosecond laser. The mechanical properties of the glasses in the inscribed regions, which have undergone photo induced changes, have been evaluated by using the nanoindentation technique. Results show that the hardness and elastic modulus of the photo-modified glasses are significantly lower...
متن کاملFemtosecond laser written embedded diffractive optical elements and their applications
Femtosecond laser direct writing (FLDW) has been widely employed to create volumetric structures in transparent materials that are applicable as various photonic devices such as active and passive waveguides, couplers, gratings, and diffractive optical elements (DOEs). The advantages of fabrication of volumetric DOEs using FLDW include not only the ability to produce embedded 3D structures but ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014